Di- μ-bromo-bis[(pyridine)(triphenylphosphine)copper(I)]

By J. Zukerman-Schpector
Departamento de Química/CCEN, Universidade Federal de Alagoas, 57.000 - Maceió, AL, Brazil

E. E. Castellano
Instituto de Física e Química de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13.560 - São Carlos, SP, Brazil

and A. E. Mauro and M. R. Roveri
Instituto de Química de Araraquara, Caixa Postal 174, 14.800-Araraquara, SP, Brazil

(Received 12 August 1985; accepted 4 November 1985)

Abstract

Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right], M_{r}=970 \cdot 0\), monoclinic, $C 2 / c, a=26 \cdot 188$ (7), $b=14 \cdot 222$ (3), c $=11.259(4) \AA, \quad \beta=94.51(2)^{\circ}, \quad V=4180(2) \AA^{3}, \quad Z$ $=4, D_{x}=1.54 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \mu=$ $2.90 \mathrm{~mm}^{-1}, F(000)=1944, T=296 \mathrm{~K}, R=0.047$ for 1271 observed reflections. The compound is in a dimeric form; the metal atom is tetrahedrally coordinated to pyridine $[\mathrm{Cu}-\mathrm{N} 2.053$ (9) \AA], two Br atoms $[\mathrm{Cu}-\mathrm{Br} \quad 2.538$ (2), $\quad 2.507$ (2) $\AA ; \quad \mathrm{Br}-\mathrm{Cu}-\mathrm{Br}$ $\left.108.50(8)^{\circ}\right]$ and triphenylphosphine $[\mathrm{Cu}-\mathrm{P}$ 2.209 (3) $\AA]$ and is slightly distorted, with a dihedral angle between the $[\mathrm{BrCuBr}]$ and $[\mathrm{PCuN}]$ planes of $90.9(2)^{\circ}$. The $\mathrm{Cu} \cdots \mathrm{Cu}^{\prime}$ distance is 2.948 (2) \AA.

Introduction. Monodentate tertiary phosphines form many complexes with Cu^{1} that show a variety of stoichiometries and structures (Gill, Mayerle, Welcker, Lewis, Ucko, Barton, Stowens \& Lippard, 1976). Considerable interest exists in structural studies of copper(I) derivatives, not only because of their stereochemistry but also for their importance in oxidation-reduction reactions in enzymes containing copper (Peisach, Aisen \& Blumberg, 1966) and in organic synthesis (Tsuda, Fujii, Kawasaki \& Saegusa, 1980). Some years ago, Jardine, Rule \& Vohra (1970) reported the preparation of halogenocopper(I) complexes using tertiary phosphines as ligands. We synthesized one of them, the title compound, and proceeded with its crystal structure determination because the only characterizations in the Jardine et al. (1970) paper were analytical data and molecular weight and to elucidate their hypothesis that the compound, though monomeric in solution, may be dimeric in the solid state.

Experimental. Irregular colourless crystals from butanol at 277 K , max. and min. linear dimensions $0.30,0.15 \mathrm{~mm}$; Nonius CAD-4 diffractometer,
graphite-monochromated Mo $K \alpha$; cell parameters by least squares on setting angles for 22 reflections, $9<\theta<30^{\circ} ; \omega-2 \theta$ scans, scan width $(0.80+0.35$ $\tan \theta)^{\circ}$, scan speed $6.7^{\circ} \mathrm{min}^{-1}$; max. range of hkl: $-27<h<27, k<15, l<11, \theta_{\max }=22^{\circ}$; standards $060,10, \overline{4}, 2$ varied $\pm 2 \cdot 4 \%$ of mean intensities over data collection; 2086 reflections measured, 2553 unique, $R_{\text {int }}=0.014,1271$ observed above $3 \sigma(I)$, Lp corrections; structure solved by direct methods. In final cycles of full-matrix least-squares refinement all non-hydrogen atoms anisotropic. Py H atoms included at constrained positions $[\mathrm{C}-\mathrm{H}=1.00$ (1) \AA] based on those found in difference synthesis, all with fixed isotropic $U=$ $0.06 \AA^{2}$; phenyl rings of triphenylphosphine as rigid bodies $\left(\mathrm{C}-\mathrm{C}=1.395, \mathrm{C}-\mathrm{H}=1.08 \AA\right.$, all angles 120°, H atoms with common $U=0.06 \AA^{2}$). Function minimized $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} \quad$ with $\quad w=\left[\sigma^{2}\left(F_{o}\right)+\right.$ $\left.0.00075 F_{o}^{2}\right]^{-1} ; \max . \Delta / \sigma=0.005 ; 135$ parameters refined; excluding unobserved reflections $R=0.047$, $w R=0.050$; inspection of F_{c} and F_{o} values indicated correction for secondary extinction required;* max. $\Delta / \sigma=0.002, \quad \Delta \rho$ excursions within -0.44 and 0.56 e \AA^{-3}; scattering factors for non-H atoms from Cromer \& Mann (1968) with corrections for anomalous dispersion from Cromer \& Liberman (1970), for H from Stewart, Davidson \& Simpson (1965); programs used: MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); SHELX76 (Sheldrick, 1976) and ORTEP (Johnson, 1965). Most of the calculations were performed on a VAX 11/780 computer of the Instituto de Física e Química de São Carlos.

Discussion. A projection of the crystallographically independent moiety is shown in Fig. 1. Positional

[^0]© 1986 International Union of Crystallography

Fig. 1. Projection of the crystallographically independent moiety, with the thermal ellipsoids drawn at 45% probability.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters with e.s.d.'s in parentheses
For each rigid phenyl ring only the coordinates of three C atoms are given.

	x	y	z	* $B_{\mathrm{cq}}\left(\AA^{2}\right)$
$\operatorname{Br}(1)$	0	0.3812 (1)	0.25	$4 \cdot 50$ (8)
$\mathrm{Br}(2)$	0	0.0933 (1)	0.25	4.24 (7)
Cu	0.0310 (1)	0.2359 (1)	0.3651 (1)	4.01 (5)
P	0.1148 (1)	0.2420 (2)	0.4063 (3)	$3 \cdot 3$ (1)
C(11)	0.1545 (3)	0.2738 (5)	0.2861 (5)	$4 \cdot 3$ (2)
C(13)	0.1637 (3)	0.2761 (5)	0.0743 (5)	$4 \cdot 3$ (2)
C(15)	0.2315 (3)	0.3365 (5)	0.2113 (5)	$4 \cdot 3$ (2)
C(21)	0.1339 (3)	0.3266 (5)	0.5218 (6)	4.9 (2)
C(23)	0.1825 (3)	0.3732 (5)	0.7036 (6)	4.9 (2)
C(25)	0.1173 (3)	0.4763 (5)	0.6127 (6)	4.9 (2)
C(31)	0.1434 (3)	$0 \cdot 1328$ (4)	0.4653 (7)	4.6 (2)
C(33)	0.1366 (3)	0.0022 (4)	0.6004 (7)	$4 \cdot 6$ (2)
C(35)	0.2139 (3)	0.0240 (4)	0.4995 (7)	$4 \cdot 6$ (2)
N	-0.0143 (3)	0.2361 (9)	0.5059 (8)	4.4 (4)
C(2)	-0.0258 (6)	0.317 (1)	0.559 (2)	$6 \cdot 0$ (7)
C(3)	-0.0556 (7)	0.318 (2)	0.655 (2)	8 (1)
C(4)	-0.0700 (7)	0.239 (2)	0.704 (1)	9 (1)
C(5)	-0.0586 (7)	0.157 (2)	0.652 (2)	7.9 (9)
C(6)	-0.0302 (6)	0.158 (1)	$0 \cdot 553$ (1)	$5 \cdot 5$ (6)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{N}$	$2.053(9)$	$\mathrm{P}-\mathrm{Cu}-\mathrm{N}$	$117.6(3)$
$\mathrm{Cu}-\mathrm{P}$	$2.209(3)$	$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{N}$	$102.2(3)$
$\mathrm{Cu}-\mathrm{Br}(1)$	$2.538(2)$	$\mathrm{Br}(2)-\mathrm{Cu}-\mathrm{N}$	$102.5(3)$
$\mathrm{Cu}-\mathrm{Br}(2)$	$2.507(2)$	$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{P}$	$110.36(9)$
$\mathrm{Cu}-\mathrm{Cu}$	$2.948(2)$	$\mathrm{Br}(2)-\mathrm{Cu}-\mathrm{P}$	$114.60(9)$
		$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{Br}(2)$	$108.49(6)$
$\mathrm{P}-\mathrm{C}(11)$		$1.827(7)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{Cu}$
$\mathrm{P}-\mathrm{C}(21)$	$1.813(7)$	$\mathrm{C}(21)-\mathrm{P}-\mathrm{Cu}$	$117.9(2)$
$\mathrm{P}-\mathrm{C}(31)$	$1.826(7)$	$\mathrm{C}(31)-\mathrm{P}-\mathrm{Cu}$	$113.0(3)$
		$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$114.5(3)$
		$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$103.1(3)$
		$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$102.8(3)$

atomic parameters and the equivalent values of the anisotropic temperature factors are given in Table 1.* Relevant bond lengths and angles are given in Table 2. The compound is in a dimeric form with the two bromine atoms sited on a twofold axis; this requires the $\mathrm{Cu}_{2} \mathrm{Br}_{2}$ moiety to be strictly planar. The coordination polyhedron around the copper ion is a slightly distorted tetrahedron with the dihedral angle between the $[\mathrm{BrCuBr}]$ and $[\mathrm{PCuN}]$ planes of $90.9(2)^{\circ}$. The $\mathrm{N}-\mathrm{Cu}-\mathrm{P}$ angle of $117.6(3)^{\circ}$, compared to 108.49 (6) $)^{\circ}$ for the $\operatorname{Br}(1)-\mathrm{Cu}-\operatorname{Br}(2)$ angle, reflects the greater steric bulk of the pyridine and triphenylphosphine compared to the bromine ligands. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 2.948 (2) \AA is sufficiently long to preclude any significant interaction.

As is general for metal-phosphine complexes (Churchill \& O'Brien, 1968; Churchill \& Kalra, 1974) angles about the phosphorus atom show systematic deviations from the ideal tetrahedral value, as shown in Table 2. The pyridine ring is planar to within experimental accuracy $\left(\chi^{2}=5 \cdot 1\right)$.

This work has received partial support from CAPES, CNPq, FAPESP and FINEP, which is hereby gratefully acknowledged.

[^1]
[^0]: ${ }^{*} F_{\text {corr }}=F_{c} /\left[1 \cdot 0-\chi F_{c}{ }^{2} / \sin (\theta)\right]$, where χ refined to 6×10^{-8} in the final run.

[^1]: * Lists of structure factors, anisotropic thermal parameters and a complete list of atom parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42622 (12 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

 ## References

 Churchill, M. R. \& Kalra, K. (1974). Inorg. Chem. 13, 1427-1434.
 Churchill, M. R. \& O'Brien, T. A. (1968). J. Chem. Soc. A, pp. 2970-2976.
 Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
 Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
 Gill, J. T., Mayerle, J. J., Welcker, P. S., Lewis, D. F., Ucko, D. A., Barton, D. J. Stowens, D. \& Lippard, S. J. (1976). Inorg. Chem. 15, 1155-1 168.
 Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
 Jardine, F. H., Rule, L. \& Vohra, A. G. (1970). J. Chem. Soc. A, pp. 238-240.
 Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
 Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
 Peisach, J., Aisen, P. \& Blumberg, W. E. (1966). In The Biochemistry of Copper. New York: Academic Press.
 Sheldrick, G. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
 Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
 Tsuda, T., Fuin, T., Kawasaki, K. \& Saegusa, T. (1980). J. Chem. Soc. Chem. Commun. pp. 1013-1014.

